





#### **T4 - THERMOELEMENTS FOR FLUES**



Genuine thermoelements with metal tubes are specially designed for use at increased temperatures, e.g. in flues for temperatures up to  $700^{\circ}$ C.

Electrical connection is made via a terminal block or a transmitter, in the connection head.

#### Basic parts of thermoelement are as follows:

- connection head,
- external protection tube,
- measuring insert,
- process connection.

*Connection head* of thermoelement can be of various dimensions and shapes and is defined via the configurator.

*External protection tube* of thermoelement is made of material selected to suit the process conditions. Protection tube can be enameled or non-enameled and is directly immersed in the medium in which the temperature is measured.

*Measuring insert* can be in classic and mantel design with different types of thermocouples (J, K, N, T) that are defined via the configurator.

We recommend the mantel design, which has a number of advantages:

- there is no contamination and oxidation of the hot end of the thermocouple, because it is in highly compressed magnesium oxide, without the presence of oxygen,

- faster response,
- great resistance to vibrations,
- higher reliability in operation,
- longer service life.

The only advantage of the classic measuring insert is the lower price.

*Process connection* is achieved using:

- flange, according to DIN 43734,
- movable connection (compression fitting)

Flange and movable connection (compression fitting) can be moved along the longitudinal axis of thermoelement, which regulates the installation length.

#### Technical characteristics

Basic technical characteristics are specified in the configurator. By filling in the configurator, an order code is generated, which defines the product.

#### Use

- flues,
- air-circulation heat treatment furnaces.

## Field of use

**Group T4-** thermoelements with external metal or metal enameled tubes are suitable for use in flues for temperatures up to 1200°C.

The main advantage of these thermoelements is their service life, which makes them suitable for use in a wide variety of flues, at increased temperatures, vibrations, and even in the presence of abrasion.

The installation of thermoelements is given in Figure 1.



**Figure 1.** Installation of **Group T4-** thermoelements (Movable flange/Metal protection tube/Head, Measuring junction/Mineral insulated measuring insert/Metal protection tube)

## Functionality and structure

#### Measurement principle

Thermocouple consists of two thermoelectrodes, made of materials of different conductivity, that are connected to each other with two junctions (hot and cold), so that they form one electrical circuit.

When one junction (hot junction) is at temperature  $T_1$ , and the other (cold junction) is at temperature  $T_2$ , an electromotive force is generated in the circuit, the value of which depends on the materials used and the values of temperatures  $T_1$  and  $T_2$ . This effect, on which thermoelectric temperature measurements are based, is known as the Seebeck effect.

In one industrial thermoelement, one junction of the thermocouple (hot junction) is a measuring junction (exposed to the temperature being measured) and the other junction (cold junction) is a reference junction which is at the known - reference temperature with which the measured temperature is compared to.

Thermovoltage values in mV depending on temperature, for thermocouples Type J, K, N and T.., are given in Table 5.

#### Constituent parts

**Group T4-** thermoelements are manufactured in line with the provisions of the international standard IEC 60584.

These products consist of a measuring insert  $\emptyset$ 6 (mantel structure), a protection tube, a connection head in which a transmitter or a ceramic block with terminals for electrical connection can be installed, depending on which output signal is needed (voltage or current).

#### *Measuring insert – mantel structure*

In this structure, the thermocouple is placed inside a metal shell. The thermoelectrodes of the thermocouple are insulated from each other, longitudinally, and from the metal shell with highly compressed magnesium oxide.

#### **Protection tubes**

With **Group T4-** thermoelements, metal tubes and metal-enameled tubes are used as external protection tubes.

Depending on the temperature and more or less on the severity of the working conditions in which they are used, metal protection tubes are produced from different steels and special alloys, with different diameters and wall thickness and are used for:

- gas temperature up to 550°C, Č.1214 is used, non-enameled tubes;
- gas temperature up to 700°C, Č.1214 is used, enameled tubes;
- air temperature from 800°C up to 1100°C, or Č.4970(1.4762), Č.4578(W.Nr.1.4841) orW.Nr.1.4749.

Use of protection tubes made of the above steel largely depends on the type of flue gas composition (sulfur concentration, primarily), the presence of currents, vibrations, abrasion, etc.

The tips of the protection tubes that are in the working medium are welded with special technology and guarantee optimal mechanical resistance and ensure effective temperature measurement, i.e. fast response.

#### **Connection head**

**Group T4-** thermoelements use connection heads, shape B, according to DIN 43729, connection head KNH-L, in which a transmitter and a ceramic block or two transmitters can be installed, and many other connection heads of different shapes and materials.

The connection heads are given in Figure 2.

#### Length

All **Group T4-** thermoelements can be ordered in the lengths specified in the Ordering information. Lengths 500, 710, 1000, 1400 and 2000mm are considered standard.

Thermoelements of non-standard lengths can be ordered depending on the specification and technical characteristics of the process.

| Thermocouple type | Thermoelectrode material | Thermoelectrode diameter [mm] |
|-------------------|--------------------------|-------------------------------|
| J                 | (+) Fe / (-) CuNi        | 1.00; 1.38; 2.00; 2.50; 3.00  |
| K                 | (+) NiCr / (-) Ni        | 1.00; 1.38; 2.00; 2.50; 3.00  |
| Ν                 | (+) NiCrSi / (-) NiSi    | 1.00; 1.38; 2.00; 2.50; 3.00  |
| Т                 | (+) Cu / (-) CuNi        | 1.00; 1.38; 2.00; 2.50; 3.00  |

Table 1: Standard materials and dimensions of thermoelectrodes for thermocouples

Table 2: Standard materials of metal protection tubes

| External protection tubes               | Diameter | Max temp. |
|-----------------------------------------|----------|-----------|
| Material                                | mm       | °C        |
| Č.1214; W.Nr.1.0305, St. 35.8           | 15       | 550       |
| Č.1214; W.Nr.1.0305, St. 35.8, enameled | 15       | 700       |
| Č.4970; W.Nr.1.4762                     | 15       | 1200      |
| Č.4578;1.4841                           | 17.34    | 1200      |
| W.Nr.1.4749                             | 17.34    | 110       |

#### Č.1214; W.Nr.1.0305, St. 35.8

Non-alloyed steel, suitable for enameling. Protection tubes made of this steel:

- non-enameled tubes; resistant to water in closed systems, neutral gases, flue gases.
   Maximum temperature of use: generally, 550°C, it can be lower depending on the working medium.
- Enameled tubes: resistant to water and steam, hot acids and vapors, liquefied gas, sulfur vapors and gases, molten lead, tin and zinc, alkaline environments, gasoline.
   Maximum temperature of use: generally, 700°C, it can be lower depending on the working medium.

## Č.4574; W.Nr.1.4571

Austenitic stainless steel, resistant to corrosion in acidic environments but not to oxidation in sulfuric and phosphoric acids (even at concentrated and low temperatures). Not resistant to high temperatures in environments containing chlorine. Maximum temperature of use: 800°C.

#### Č.4970; W.Nr.1.4762

Fire resistant, stainless steel, ferroalloy, resistant to sulfur atmosphere (very good in oxidation and good in reduction). Not recommended in atmospheres containing nitrogen. Maximum temperature of use: 1200°C.

### Č.4578; W.Nr.1.4841

Good thermal, mechanical and corrosion resistance. Resistant to nitrogen atmosphere with low oxygen concentration. It is similar but at the same time better than steel Č.4574. Not resistant to gases containing sulfur. Maximum temperature of use: 1200°C.

#### W.Nr.1.4749

Fire resistant, stainless steel, ferroalloy, resistant to the reducing atmosphere containing high concentrations of sulfur, to oxidation in the air and gases generated during oil combustion. Maximum temperature of use: 1100°C.

#### Electronics

If the customer wants a current output signal, a 2-wire transmitter is installed in the connection head.

Transmitters in 2-wire technology and with an output signal of 4-20 mA are very easily programmed with the help of a personal computer, a programming unit and the appropriate software. Transmitters are galvanically isolated.

If the transmitter is intended for installation on a DIN rail, then a ceramic block with terminals for electrical connection is installed in the connection head.

#### Performances

#### Working conditions for the connection head

Ambient temperature - the case when the connection head is without transmitter: - 40 to  $130^{\circ}$ C. Ambient temperature - the case when the transmitter is installed in the connection head: - 40 to  $85^{\circ}$ C.

#### Process temperature

Operating range is defined - determined based on the combination of the type of thermocouple and the material of the protection tube.

#### Accuracy (certainty)

Standard IEC 60584 defines the standard values and tolerances (permissible errors) of thermocouples. The standard accuracy classes for thermocouples type J, K, N, T, ..; are class 2.

Permissible measurement errors are listed in Table 3.

|         | Standa | ard tolerance (IEC 60584) | Reduced tolerance (IEC 60584) |                               |  |  |  |
|---------|--------|---------------------------|-------------------------------|-------------------------------|--|--|--|
| Туре    | Class  | Permissible measurement   | Class                         | Permissible measurement error |  |  |  |
|         |        | error                     |                               |                               |  |  |  |
| J       | 2      | ± 2.5°C (-40333) °C       | 1                             | ± 1.5°C (-40375) °C           |  |  |  |
| Fe-CuNi |        | ±0.0075 t  (333…750) °C   |                               | ±(0.004 t  (375750) °C        |  |  |  |
| K       | 2      | ± 2.5°C (-40333) °C       | 1                             | ± 1.5°C (-40375) °C           |  |  |  |
| NiCr-Ni |        | ±0.0075 t  (3331200) °C   |                               | ±(0.004 t  (375…1200) °C      |  |  |  |
| N       |        | ± 2.5°C (-40333) °C       | 1                             | ± 1.5°C (-40375) °C           |  |  |  |
| NiCrSi- | 2      | ±0.0075 t  (333…1200) °C  |                               | ±(0.004 t  (3751200) °C       |  |  |  |
| NiSi    |        |                           |                               |                               |  |  |  |
| Т       |        | ± 1°C (-40133) °C         | 1                             | ± 0.5°C (-40125) °C           |  |  |  |
| Cu-CuNi | 2      | ±0.0075 t  (133350) °C    |                               | ±(0.004 t  (125350) °C        |  |  |  |

 Table 3: Permissible measurement errors

Transmitter error must be added to the thermocouple error, including reference junction compensation.

#### Response time

Response time for these types of thermocouples is not a circular parameter. If you want that information, contact the Technical Service - TERMOTEHNA.

#### Insulation

Resistance of the insulation between the electrical terminals on the ceramic block and the external tube is fully guaranteed by the manufacturing procedures. For thermoelements with a measuring insert, according to the IEC 1515 standard, the value of the insulation resistance between the terminal and the protection tube is:

| - | at 25°C, testing | g at 500 Vdc | ≥1000 M Ώ |
|---|------------------|--------------|-----------|
|   |                  |              |           |

| - | at 500°C, testing at 500 Vdc | $\leq$ 5 M $\Omega$ |
|---|------------------------------|---------------------|
|---|------------------------------|---------------------|

#### Self-heating

Does not occur.

#### Installation

Given in Figure 1. It is possible to replace the measuring insert during operation, without stopping the process.

#### **Connection head**

Pursuant to the provisions of the DIN 43729 standard, the housing of the connection head, shape B, contains a ceramic block with electrical terminals or a transmitter. It can be of different types and materials (e.g. painted aluminum, crude iron or stainless steel).

It is possible to simultaneously install a ceramic block and a transmitter or two transmitters in the housing of the connection head, shape KNH-L.

Connection heads are given in Figure 2.







Figure 2. Connection heads

#### Transmitters

The following transmitters are applicable:

- > PC programmable transmitters 4...20mA (galvanically isolated)
- Transmitters with HART protocol (galvanically isolated), the output contains 4...20mA and HART superimposed signals
- Transmitters (galvanically isolated) PROFIBUS PA with output signal, the communication address can be set via the appropriate software or by means of mechanical switches. Customer can request the desired configuration during the ordering process.

If the transmitters are installed on a DIN rail, ceramic blocks are installed in the connection head.

Measuring insert



**measuring insert** – mantel structure, directly placed into the metal protection tube.

Figure 3. Standard connecting

Figure 4 shows parts of the Group T4- thermoelement.



Figure 4. Parts of Group T4- thermoelements (Head/Movable flange/Metal protection tube/ Mineral insulated insert (MgO))

When replacing the measuring insert, the installation length (Lu) depends on the length (L) of the protection tube.

#### Auxiliary equipment Movable Flange





Figure 4. Movable flange DIN 43734

#### **Certificates**

- Calibration certificate for temperature measuring instruments
- Calibration certificate for temperature measuring equipment
- Certificate of calibration laboratory accreditation accreditation no.: 02-058

#### Other details

#### Maintenance

Group T4- thermocouples do not require any special maintenance.

Periodic inspections are recommended because mechanical damage and thermal shocks, aggressive environments, occurrence of abrasion can cause tube damage.

Furthermore, periodic calibrations are recommended, on an annual basis, in order to check the metrological characteristics of thermocouples, by an authorized laboratory, and in line with the Law.

| Temperature | Thermocouple                   | Material of                 | Nominal          | Measuring                      | Catalog           | number            |
|-------------|--------------------------------|-----------------------------|------------------|--------------------------------|-------------------|-------------------|
|             |                                | metal<br>protection<br>tube | length L<br>[mm] | insert Ø6<br>Length Lu<br>[mm] | thermocouple<br>1 | thermocouple<br>2 |
| up to 550°C | Fe-CuNi                        |                             | 500              | 525                            | T4- 1101          | T4- 2101          |
|             | Type J,                        | W.Nr. 1.0305                | 710              | 735                            | T4-1102           | T4-2102           |
|             | according to IEC 60584-1 in    | St. 35.8<br>Ø15x2           | 1000             | 1025                           | T4-1103           | T4-2103           |
|             | mantel<br>measuring<br>insert  |                             | 1400             | 1425                           | T4-1104           | T4-2104           |
| up to 700°C | Fe-CuNi                        | W.Nr. 1.0305                | 500              | 525                            | T4-1121           | T4-2121           |
| -           | Type J,                        | St. 35.8                    | 710              | 735                            | T4-1122           | T4-2122           |
|             | according to IEC 60584-1 in    | Enameled<br>Ø15x2           | 1000             | 1025                           | T4-1123           | T4-2123           |
|             | mantel<br>measuring<br>insert  | ©15x2<br>enameled           | 1400             | 1425                           | T4-1124           | T4-2124           |
| up to 550°C | NiCr-NiAl                      |                             | 500              | 525                            | T4-1201           | T4-2201           |
|             | Туре К,                        | W.Nr. 1.0305                | 710              | 735                            | T4-1202           | T4-2202           |
|             | according to<br>IEC 60584-1 in | St. 35.8<br>Ø15x2           | 1000             | 1025                           | T4-1203           | T4-2203           |
|             | mantel<br>measuring<br>insert  |                             | 1400             | 1425                           | T4-1204           | T4-2204           |
| up to 700°C | NiCr-NiAl                      |                             | 500              | 525                            | T4-1221           | T4-2221           |
|             | Туре К,                        | W.Nr. 1.0305                | 710              | 735                            | T4-1222           | T4-2222           |
|             | according to IEC 60584-1 in    | St. 35.8<br>Ø15x2           | 1000             | 1025                           | T4-1223           | T4-2223           |
|             | mantel<br>measuring<br>insert  | enameled                    | 1400             | 1425                           | T4-1224           | T4-2224           |

**Table 4.** Catalog codes for standard thermocouples

| Thermoco |         |         |         |         |         |         |         |         |         |         |
|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| °C       | 0       | - 10    | - 20    | - 30    | - 40    | - 50    | - 60    | - 70    | - 80    | - 90    |
| - 200    | - 7,890 | - 8,096 |         |         |         |         |         |         |         |         |
| - 100    | - 4,632 | - 5,036 | - 5,426 | - 5,801 | - 6,159 | - 6,499 | - 6,821 | -7,122  | -7,402  | - 7,659 |
| 0        | 0       | - 0,501 | -0,995  | - 1,481 | - 1,960 | - 2,431 | - 2,892 | - 3,344 | - 3,785 | - 4,215 |
| °C       | 0       | 10      | 20      | 30      | 40      | 50      | 60      | 70      | 80      | 90      |
| 0        | 0       | 0,507   | 1,019   | 1,536   | 2,058   | 2,585   | 3,115   | 3,649   | 4,186   | 4,725   |
| 100      | 5,268   | 5,812   | 6,359   | 6,907   | 7,457   | 8,008   | 8,560   | 9,113   | 9,667   | 10,222  |
| 200      | 10,777  | 11,332  | 11,887  | 12,442  | 12,998  | 13,553  | 14,108  | 14,663  | 15,217  | 15,771  |
| 300      | 16,325  | 16,879  | 17,432  | 17,984  | 18,537  | 19,089  | 19,640  | 20,192  | 20,743  | 21,295  |
| 400      | 21,846  | 22,397  | 22,949  | 23,501  | 24,054  | 24,607  | 25,161  | 25,716  | 26,272  | 26,829  |
| 500      | 27,388  | 27,949  | 28,511  | 29,075  | 29,642  | 30,210  | 30,762  | 31,356  | 31,933  | 32,513  |
| 600      | 33,096  | 33,683  | 34,273  | 34,867  | 35,464  | 36,066  | 36,671  | 37,280  | 37,893  | 38,510  |
| 700      | 39,130  | 39,754  | 40,382  | 41,013  | 41,647  | 42,283  | 42,922  | 43,563  | 44,207  | 44,852  |
| 800      | 45,498  | 46,144  | 46,790  | 47,434  | 48,076  | 48,716  | 49,354  | 49,989  | 50,621  | 51,249  |
| 900      | 51,875  | 52,496  | 53,115  | 53,729  | 54,341  | 54,948  | 55,553  | 56,155  | 56,753  | 57,349  |

**Table 5**: Thermovoltage values in mV depending on temperature

Thermocouple NiCr-NiAl, Type K, according to IEC 60584-1 - Thermovoltage values in mV

|   | °C    | 0       | - 10    | - 20    | - 30    | - 40    | - 50    | - 60    | - 70    | - 80    | - 90    |
|---|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| _ | - 100 | - 3,553 | - 3,852 | - 4,138 | - 4,410 | - 4,669 | - 4,912 | - 5,141 | - 5,354 | - 5,550 | - 5,730 |
|   | 0     | 0       | - 0,392 | -0,777  | - 1,156 | - 1,527 | - 1,889 | - 2,243 | - 2,586 | - 2,920 | - 3,242 |
|   | °C    | 0       | 10      | 20      | 30      | 40      | 50      | 60      | 70      | 80      | 90      |
|   | 0     | 0       | 0,397   | 0,798   | 1,203   | 1,611   | 2,022   | 2,436   | 2,850   | 3,266   | 3,681   |
|   | 100   | 4,095   | 4,508   | 4,919   | 5,327   | 5,733   | 6,137   | 6,539   | 6,939   | 7,338   | 7,737   |
|   | 200   | 8,137   | 8,537   | 8,938   | 9,341   | 9,745   | 10,151  | 10,560  | 10,969  | 11,381  | 11,793  |
|   | 300   | 12,207  | 12,623  | 13,039  | 13,456  | 13,874  | 14,292  | 14,712  | 15,132  | 15,552  | 15,974  |
|   | 400   | 16,395  | 16,818  | 17,241  | 17,664  | 18,088  | 18,513  | 18,938  | 19,363  | 19,788  | 20,214  |
|   | 500   | 20,640  | 21,066  | 21,493  | 21,919  | 22,346  | 22,772  | 23,196  | 23,624  | 24,050  | 24,476  |
|   | 600   | 24,902  | 25,327  | 25,751  | 26,176  | 26,599  | 27,022  | 27,445  | 27,867  | 28,288  | 28,709  |
|   | 700   | 29,128  | 29,547  | 29,965  | 30,383  | 30,799  | 31,214  | 31,629  | 32,042  | 32,455  | 32,866  |
|   | 800   | 33,277  | 33,686  | 34,095  | 34,502  | 34,909  | 35,314  | 35,718  | 36,121  | 36,524  | 36,925  |
|   | 900   | 37,325  | 37,724  | 38,122  | 38,519  | 38,915  | 39,310  | 39,703  | 40,096  | 40,488  | 40,879  |
|   | 1000  | 41,269  | 41,657  | 42,045  | 42,432  | 42,817  | 43,202  | 43,585  | 43,968  | 44,349  | 44,729  |
|   | 1100  | 45,108  | 45,486  | 45,863  | 46,238  | 46,612  | 46,985  | 47,356  | 47,726  | 48,095  | 48,462  |
|   | 1200  | 48,828  | 49,192  | 49,555  | 49,916  | 50,276  | 50,633  | 50,990  | 51,344  | 51,697  | 52,049  |
|   | 1300  | 52,398  | 52,747  | 53,093  | 53,439  | 53,782  | 54,125  | 54,466  | 54,807  |         |         |

|       |        |        | J P    | 8      |        |        |        |        |        |        |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| °C    | 0      | - 10   | - 20   | - 30   | - 40   | - 50   | - 60   | - 70   | - 80   | - 90   |
| - 200 | - 3,99 | - 4,08 | - 4,16 | - 4,22 | - 4,27 |        |        |        |        |        |
| - 100 | - 2,40 | - 2,61 | - 2,80 | - 2,99 | - 3,17 | - 3,33 | - 3,49 | - 3,63 | - 3,76 | - 3,88 |
| 0     | 0      | -0,26  | - 0,51 | - 0,77 | - 1,02 | - 1,26 | - 1,50 | - 1,74 | - 1,97 | - 2,19 |
| °C    | 0      | 10     | 20     | 30     | 40     | 50     | 60     | 70     | 80     | 90     |
| 0     | 0      | 0,26   | 0,52   | 0,79   | 1,06   | 1,33   | 1,61   | 1,90   | 2,18   | 2,47   |
| 100   | 2,77   | 3,07   | 3,37   | 3,67   | 3,98   | 4,30   | 4,61   | 4,93   | 5,25   | 5,58   |
| 200   | 5,91   | 6,24   | 6,57   | 6,91   | 7,25   | 7,59   | 7,94   | 8,28   | 8,63   | 8,98   |
| 300   | 9,34   | 9,69   | 10,05  | 10,41  | 10,77  | 11,13  | 11,50  | 11,86  | 12,23  | 12,60  |
| 400   | 12,97  | 13,34  | 13,71  | 14,09  | 14,46  | 14,84  | 15,22  | 15,60  | 15,98  | 16,36  |
| 500   | 16,74  | 17,12  | 17,51  | 17,89  | 18,28  | 18,66  | 19,05  | 19,44  | 19,83  | 20,22  |
| 600   | 20,60  | 20,99  | 21,39  | 21,78  | 22,17  | 22,56  | 22,95  | 23,34  | 23,74  | 24,13  |
| 700   | 24,52  | 24,91  | 25,31  | 25,70  | 26,09  | 26,49  | 26,88  | 27,27  | 27,67  | 28,06  |
| 800   | 28,45  | 28,84  | 29,24  | 29,63  | 30,02  | 3041   | 30,80  | 31,19  | 31,58  | 31,98  |
| 900   | 32,37  | 32,75  | 33,14  | 33,53  | 33,92  | 34,31  | 34,70  | 35,08  | 35,47  | 35,86  |
| 1000  | 36,24  | 36,63  | 37,01  | 37,40  | 37,78  | 38,16  | 38,55  | 38,93  | 39,31  | 39,69  |
| 1100  | 40,07  | 40,45  | 40,83  | 41,21  | 41,59  | 41,96  | 42,34  | 42,71  | 43,09  | 43,46  |
| 1200  | 43,83  | 44,20  | 44,57  | 44,94  | 45,31  | 45,68  | 46,04  | 46,41  | 46,77  | 47,14  |
| 1300  | 47,50  |        |        |        |        |        |        |        |        |        |

Thermocouple NiCrSi-NiSi, Type N, according to IEC 60584-1 - Thermovoltage values in mV

Thermocouple Cu-CuNi, Type T, according to IEC 60584-1 - Thermovoltage values in  $\rm mV$ 

| I HUI MOUO | upic Cu-C | unit, rype | i, accoru | mg to ILC | 00304-1 | 1 normov ( | Juage valu |        |        |        |
|------------|-----------|------------|-----------|-----------|---------|------------|------------|--------|--------|--------|
| °C         | 0         | - 10       | - 20      | - 30      | - 40    | - 50       | - 60       | - 70   | - 80   | - 90   |
| - 100      | - 3,37    | - 3,65     | - 3,92    | - 4,17    | - 4,41  | - 4,64     | - 4,86     | - 5,06 | - 5,26 | - 5,43 |
| 0          | 0         | - 0,38     | - 0,75    | - 1,12    | - 1,47  | - 1,81     | - 2,15     | - 2,47 | - 7,78 | - 3,08 |
| °C         | 0         | 10         | 20        | 30        | 40      | 50         | 60         | 70     | 80     | 90     |
| 0          | 0         | 0,39       | 0,78      | 1,19      | 1,61    | 2,03       | 2,46       | 2,90   | 3,35   | 3,81   |
| 100        | 4,27      | 4,74       | 5,22      | 5,71      | 6,20    | 6,70       | 7,20       | 7,71   | 8,23   | 8,75   |
| 200        | 9,28      | 9,82       | 10,36     | 10,90     | 11,45   | 12,01      | 12,57      | 13,13  | 13,70  | 14,28  |
| 300        | 14,86     | 15,44      | 16,03     | 16,62     | 17,21   | 17,81      | 18,42      | 19,027 | 19,63  | 20,25  |
| 400        | 20,86     |            |           |           |         |            |            |        |        |        |

# TERMOTEHNA

## International Colour Codes applied to temperature engineering

| The | ermocouple type                                                                         | Europe                              | Germany   | USA          | Serbia    | Great Britain  |
|-----|-----------------------------------------------------------------------------------------|-------------------------------------|-----------|--------------|-----------|----------------|
|     |                                                                                         | ****<br>****<br>DIN43722(IEC 584-3) | DIN 43714 | ANSI MC 96.1 | IEC 584-3 | BS 4937 / 1843 |
| R   | ⊕ Platinum-13%<br>Rhodium                                                               | •                                   | +         |              | •         | •              |
| S   | <ul> <li>Platinum</li> <li>Platinum-10%</li> <li>Rhodium</li> <li>Platinum</li> </ul>   | •                                   | <b>-</b>  |              |           |                |
| В   | <ul> <li>Platinum-30%</li> <li>Rhodium</li> <li>Platinum-6%</li> <li>Rhodium</li> </ul> |                                     | =:        | <b>—</b> :   |           |                |
| J   | ⊕ Iron ⊖ Copper-Nickel                                                                  | :                                   | :         | <b></b> :    | <b></b> : | <b></b> :      |
| Т   | <ul> <li>◆ Copper</li> <li>○ Copper-Nickel</li> </ul>                                   | <b>:</b>                            | =:        | <b></b> ±    | <b></b> : |                |
| E   | <ul> <li>⊕ Nickel- Chromium</li> <li>⊕ Copper-Nickel</li> </ul>                         |                                     | ; –       | ;            | ===:      |                |
| К   | <ul><li>⊕ Nickel- Chromium</li><li>⊖ Nickel</li></ul>                                   | :                                   | :         | <b></b> :    | <b></b> : |                |
|     |                                                                                         |                                     |           | ±            |           | <b></b> :      |
| N   | <ul> <li>Nickel- Chromium-<br/>Silicon</li> <li>Nickel- Silicon</li> </ul>              | ; =                                 |           |              | ==:       |                |
| U   | <ul> <li>⊕ Copper</li> <li>⊖ Copper-Nickel</li> </ul>                                   | :                                   | :         |              | :         |                |
| L   | <ul> <li>⊕ Iron</li> <li>⊕ Copper-Nickel</li> </ul>                                     | :                                   | :         |              | :         |                |